Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 334: 122191, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37866807

RESUMO

Gamma-aminobutyric acid (GABA) is a multifunctional molecule that is widely present in the nervous system and nonneuronal tissues. It plays pivotal roles in neurotransmission, regulation of secretion, cell differentiation, proliferation, and tumorigenesis. However, the exact mechanisms of GABA in head and neck squamous cell carcinomas (HNSCCs) are unknown. We took advantage of RNA sequencing in this work and uncovered the potential gene expression profiles of the GABA-treated HNSCC cell line HN4-2. We found that the expression of CCND2 and BCL2L1 was significantly upregulated. Furthermore, GABA treatment inhibited the cell apoptosis induced by cisplatin and regulated the cell cycle after treatment with cisplatin in HN4-2 cells. Moreover, we also found that GABA could upregulate the expression of CCND2 and BCL2L1 after treatment with cisplatin. Our results not only reveal the potential pro-tumorigenic effect of GABA on HNSCCs but also provide a novel therapeutic target for HNSCC treatment.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Cisplatino/metabolismo , Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Regulação Neoplásica da Expressão Gênica , Ciclina D2/genética , Ciclina D2/metabolismo , Proteína bcl-X/metabolismo
2.
J Immunol ; 211(11): 1701-1713, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37843504

RESUMO

Dendritic cells (DCs), a driver of psoriasis pathogenesis, produce IL-23 and trigger IL-23/IL-17 cytokine axis activation. However, the mechanisms regulating IL-23 induction remain unclear. In the current study, we found that mice with E3 ligase FBXW7 deficiency in DCs show reduced skin inflammation correlated with the reduction of IL-23/IL-17 axis cytokines in the imiquimod-induced psoriasis model. Fbxw7 deficiency results in decreased production of IL-23 in DCs. FBXW7 interacts with the lysine N-methyltransferase suppressor of variegation 39 homolog 2 (SUV39H2), which catalyzes the trimethylation of histone H3 Lys9 (H3K9) during transcription regulation. FBXW7 mediates the ubiquitination and degradation of SUV39H2, thus decreasing H3K9m3 deposition on the Il23a promoter. The Suv39h2 knockout mice displayed exacerbated skin inflammation with the IL-23/IL-17 axis overactivating in the psoriasis model. Taken together, our results indicate that FBXW7 increases IL-23 expression in DCs by degrading SUV39H2, thereby aggravating psoriasis-like inflammation. Inhibition of FBXW7 or the FBXW7/SUV39H2/IL-23 axis may represent a novel therapeutic approach to psoriasis.


Assuntos
Dermatite , Psoríase , Animais , Camundongos , Células Dendríticas/metabolismo , Dermatite/patologia , Modelos Animais de Doenças , Epigênese Genética , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Inflamação/metabolismo , Interleucina-17/metabolismo , Interleucina-23/metabolismo , Psoríase/patologia , Pele/patologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Drug Des Devel Ther ; 17: 1593-1609, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260764

RESUMO

Background: As a keratolytic, salicylic acid (SA) can be topically applied in various formulations and doses in dermatology. Supramolecular SA hydrogel, a new SA formulation with higher bioavailability, is developed and commercially available nowadays. However, there still remain concerns that the long-term and continual application of SA at low concentrations may jeopardize the cutaneous barrier properties. Aim of the Study: To reveal the long-term effects of 0.5-5% supramolecular SA hydrogel on the skin barrier in normal mice models. Materials and Methods: The 0.5%, 1%, 2%, and 5% supramolecular SA hydrogel or hydrogel vehicle without SA was applied to mice's shaved dorsal skin once per day respectively. Tissue samples of the dorsal skin were harvested on day 14 and 28 of the serial application of SA for histopathological observation and transcriptomic analysis. Results: Following topical supramolecular SA hydrogel therapy with various concentrations of SA (0.5%, 1%, 2%, and 5%) for 14 days and 28 days, there were no obvious macroscopic signs of impaired cutaneous health and no inflammatory or degenerative abnormalities were observed in histological results. Additionally, the transcriptomic analysis revealed that on day 14, SA dramatically altered the expression of genes related to the extracellular matrix structural constituent. And on day 28, SA regulated gene expression profiles of keratinization, cornified envelope, and lipid metabolism remarkably. Furthermore, the expression of skin barrier related genes was significantly elevated after the application of SA based on RNA-seq results, and this is likely to be associated with the PPAR signaling pathway according to the enrichment analysis. Conclusion: Our findings demonstrated that the sustained topical administration of the 0.5-5% supramolecular SA hydrogel for up to 28 days did no harm to normal murine skin and upregulated the expression of genes related to the epidermal barrier.


Assuntos
Hidrogéis , Ácido Salicílico , Camundongos , Animais , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , Hidrogéis/química , Pele , Administração Cutânea , Administração Tópica , Homeostase
4.
Cancer Lett ; 567: 216285, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37354982

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterized by hypoxia and hypovascular tumor microenvironment. Nucleolar and spindle associated protein 1 (NUSAP1) is a microtubule-associated protein that is known to be involved in cancer biology. Our study aimed to investigate the role of NUSAP1 in glycolytic metabolism and metastasis in PDAC. Expression and prognostic value of NUSAP1 in PDAC and common gastrointestinal tumors was evaluated. The function of NUSAP1 in PDAC progression was clarified by single-cell RNA-seq and further experiments in vitro, xenograft mouse model, spontaneous PDAC mice model and human tissue microarray. The downstream genes and signaling pathways regulated by NUSAP1 were explored by RNA-Seq. And the regulation of NUSAP1 on Lactate dehydrogenase A (LDHA)-mediated glycolysis and its underlying mechanism was further clarified by CHIP-seq. NUSAP1 was an independent unfavorable predictor of PDAC prognosis that playing a critical role in metastasis of PDAC by regulating LDHA-mediated glycolysis. Mechanically, NUSAP1 could bind to c-Myc and HIF-1α that forming a transcription regulatory complex localized to LDHA promoter region and enhanced its expression. Intriguingly, lactate upregulated NUSAP1 expression by inhibiting NUSAP1 protein degradation through lysine lactylated (Kla) modification, thus forming a NUSAP1-LDHA-glycolysis-lactate feedforward loop. The NUSAP1-LDHA-glycolysis-lactate feedforward loop is one of the underlying mechanisms to explain the metastasis and glycolytic metabolic potential in PDAC, which also provides a novel insights to understand the Warburg effect in cancer. Targeting NUSAP1 would be an attractive paradigm for PDAC treatment.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Animais , Camundongos , Lactato Desidrogenase 5/genética , Lactato Desidrogenase 5/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Glicólise/genética , Lactatos , Regulação Neoplásica da Expressão Gênica , L-Lactato Desidrogenase/genética , Proliferação de Células , Microambiente Tumoral , Neoplasias Pancreáticas
5.
Exp Dermatol ; 32(9): 1439-1450, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37293825

RESUMO

Bowenoid papulosis (BP) is a benign and possibly carcinogenic disease associated with human papillomavirus (HPV) infection, which has been increasingly recognised and paid attention to in recent years, but the potential mechanisms still remain unclear. In our study, three patients who were diagnosed with BP were enrolled into our research. Skin biopsies were taken and were separated into two parts, one part was for HE staining and the others were for RNA-sequencing (RNA-seq). All the three patents were human papillomavirus (HPV) positive and HE staining revealed typical skin histopathological changes in BP, including dyskeratosis, hyperplasia and hypertrophy of the granular and spinous layers, atypical keratinocytes. RNA-seq analysis demonstrated that a total of 486 differentially expressed genes (DEGs) were detected between the skin tissues from BP and the controls, among which, 320 genes were significantly upregulated and 166 genes were dramatically downregulated. GO enrichment revealed that antigen binding, cell cycle, immune response and keratinisation to be the most notably altered pathways, whereas KEGG analysis indicated that cell cycle cytokine-cytokine receptor interaction, ECM receptor interaction and p53 signalling pathway to be the most significantly changed signalling pathways in BP. Furthermore, metabolism-associated enrichment analysis showed that cholesterol metabolism, metabolism of xenobiotics by cytochrome p450 and pyrimidine metabolism to be the most dramatically dysregulated metabolic pathways in BP as compared to normal controls. Our study revealed that inflammation, metabolism and cell proliferation signalling pathways might be the most important pathways for BP disease, targeted inhibiting of these signals might be a potential method for BP treatment.


Assuntos
Doença de Bowen , Carcinoma de Células Escamosas , Condiloma Acuminado , Infecções por Papillomavirus , Lesões Pré-Cancerosas , Humanos , Infecções por Papillomavirus/genética , Infecções por Papillomavirus/complicações , Transcriptoma , Doença de Bowen/genética , Doença de Bowen/diagnóstico , Doença de Bowen/patologia
6.
Stem Cell Res Ther ; 14(1): 147, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248497

RESUMO

BACKGROUND: Atopic dermatitis (AD) is one of the most common immune and inflammatory skin disorders, leading to insufferable itching and skin abnormalities that seriously affect life quality of patients. There are still huge unmet needs for long-term and effective disease control, despite currently available therapies. Evidenced by some preclinical and clinical studies of AD treatment with stem cells, stem cell treatment could significantly and effectively ameliorate AD symptoms. OBJECTIVES: To elucidate underlying mechanisms of how stem cells therapy alleviates AD-like symptoms. METHODS: An AD-like mouse model was constructed and treated with mesenchymal stem cells (MSCs) subcutaneously or subcutaneously combined with intravenously. The differentially expressed genes were sorted out from RNA sequencing results of dorsal skin and blood. RESULTS: Two injection routes of MSCs could alleviate AD-like symptoms and pathologic changes of the skin and immune organs. RNA sequencing of dorsal skin sections and blood provided gene expression signatures for amelioration of skin defects, inflammatory and immune modulation by MSCs, as well as common AD molecular markers for the skin and blood, which may benefit for clinical diagnosis. IL-1ß and its signaling pathway were specifically found to be associated with the development of AD-like dermatitis lesions. MSC treatment effectively inhibited the JAK-STAT pathway and receptors of IL-4, IL-13, IL-17, and IgE. CONCLUSIONS: MSC therapy could regulate abnormal immune and inflammatory status in AD. Mechanistic exploration will contribute to the development of personalized AD treatment based on MSCs.


Assuntos
Dermatite Atópica , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Dermatite Atópica/terapia , Janus Quinases/metabolismo , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Pele/patologia , Fatores Imunológicos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical/metabolismo , Citocinas/metabolismo
7.
Life Sci ; 326: 121788, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230377

RESUMO

AIM: Psoriasis is one of the most common dermatological disorders, characterized by increased epidermal hyperplasia and immune cell infiltration. Psychological stress has been reported to contribute to the severity, aggravation, and relapse of psoriasis. However, the exact mechanism involved in psychological stress's impact on psoriasis is still unclear. We aim to investigate the role of psychological stress in psoriasis from a transcriptomic and metabolomic perspective. MAIN METHOD: We developed a chronic restrain stress (CRS)-imiquimod (IMQ)-induced psoriasis-like mouse model and performed a comprehensive comparative transcriptomic and metabolic analysis with control mice, CRS-treated mice, and IMQ-treated mice to investigate how psychological stress affects psoriasis. KEY FINDING: We found that CRS-IMQ-induced psoriasis-like mice showed significant exacerbation of psoriasis-like skin inflammation compared with mice treated with IMQ only. Mice of the CRS + IMQ group showed increased expression of keratinocyte proliferation and differentiation genes, differential regulation of cytokines, and promotion of linoleic acid metabolism. Correlation analysis of differentially expressed genes in the CRS-IMQ-induced psoriasis-like mice and human psoriasis datasets compared with respective controls revealed 96 overlapping genes of which 30 genes showed consistent induced or repressed expression in all human and mouse datasets. SIGNIFICANCE: Our study provides new insights into the effects of psychological stress on psoriasis pathogenesis and the mechanisms involved, which provides clues for development of therapeutics or biomarkers.


Assuntos
Aminoquinolinas , Psoríase , Camundongos , Humanos , Animais , Imiquimode/toxicidade , Aminoquinolinas/toxicidade , Camundongos Endogâmicos BALB C , Psoríase/induzido quimicamente , Psoríase/genética , Análise de Sequência de RNA , Modelos Animais de Doenças , Pele
8.
Life Sci ; 317: 121439, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36731645

RESUMO

Stress plays a critical role in hair loss, although the underlying mechanisms are largely unknown. γ-aminobutyric acid (GABA) has been reported to be associated with stress; however, whether it affects stress-induced hair growth inhibition is unclear. This study aimed to investigate the potential roles and mechanisms of action of GABA in chronic restraint stress (CRS)-induced hair growth inhibition. We performed RNA-seq analysis and found that differentially expressed genes (DEGs) associated with neuroactive ligand-receptor interaction, including genes related to GABA receptors, significantly changed after mice were treated with CRS. Targeted metabolomics analysis and enzyme-linked immunosorbent assay (ELISA) also showed that GABA levels in back skin tissues and serum significantly elevated in the CRS group. Notably, CRS-induced hair growth inhibition got aggravated by GABA and alleviated through GABAA antagonists, such as picrotoxin and ginkgolide A. RNA sequencing analysis revealed that DEGs related to the cell cycle, DNA replication, purine metabolism, and pyrimidine metabolism pathways were significantly downregulated in dermal papilla (DP) cells after GABA treatment. Moreover, ginkgolide A, a GABAA antagonist extracted from the leaves of Ginkgo biloba, promoted the cell cycle of DP cells. Therefore, the present study demonstrated that the increase in GABA could promote CRS-induced hair growth inhibition by downregulating the cell cycle of DP cells and suggested that ginkgolide A may be a promising therapeutic drug for hair loss.


Assuntos
Ginkgolídeos , Ácido gama-Aminobutírico , Camundongos , Animais , Ácido gama-Aminobutírico/farmacologia , Ginkgolídeos/farmacologia , Cabelo , Alopecia , Folículo Piloso
9.
Life Sci ; 317: 121474, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36746357

RESUMO

AIMS: Atopic dermatitis (AD) is a common chronic inflammatory skin disorder that affects up to 20 % of children and 10 % of adults worldwide; however, the exact molecular mechanisms remain largely unknown. MATERIALS AND METHODS: In this study, we used integrated transcriptomic and metabolomic analyses to study the potential mechanisms of 1-chloro-2,4-dinitrobenzene (DNCB)-induced AD-like skin lesions. KEY FINDINGS: We found that DNCB induced AD-like skin lesions, including phenotypical and histomorphological alterations and transcriptional and metabolic alterations in mice. A total of 3413 differentially expressed metabolites were detected between DNCB-induced AD-like mice and healthy controls, which includes metabolites in taurine and hypotaurine metabolism, phenylalanine metabolism, biosynthesis of unsaturated fatty acids, tryptophan metabolism, arachidonic acid metabolism, pantothenate and CoA biosynthesis, pyrimidine metabolism, and glycerophospholipid metabolism pathways. Furthermore, the differentially expressed genes associated (DEGs) with these metabolic pathways were analyzed using RNA sequencing (RNA-seq), and we found that the expression of pyrimidine metabolism-associated genes was significantly increased. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the glycolysis/gluconeogenesis, glucagon signaling pathway and pentose phosphate pathway-associated metabolic genes were dramatically altered. SIGNIFICANCE: Our results explain the possible mechanism of AD at the gene and metabolite levels and provide potential targets for the development of clinical drugs for AD.


Assuntos
Dermatite Atópica , Dermatopatias , Camundongos , Animais , Dermatite Atópica/induzido quimicamente , Dinitrobenzenos/efeitos adversos , Dinitrobenzenos/metabolismo , Dinitroclorobenzeno , Transcriptoma , Citocinas/metabolismo , Pele/metabolismo , Dermatopatias/metabolismo , Pirimidinas/metabolismo , Camundongos Endogâmicos BALB C
10.
Pathol Oncol Res ; 28: 1610176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665406

RESUMO

Background: Human papillomavirus type 8 (HPV8) has been implicated in the progress of non-melanoma skin cancers and their precursor lesions. The HPV8 E7 oncoprotein plays a key role in the tumorigenesis of HPV-associated cutaneous tumors. However, the exact role of HPV8 E7 in human epidermal carcinogenesis has not been fully elucidated. Methods: To investigate the potential carcinogenic effects of HPV8 E7 on epithelial cells, we used RNA-sequencing technology to analyze the gene expression profile of HPV8 E7-overexpressed normal human epidermal keratinocytes (NHEKs). Results: RNA-sequencing revealed 831 differentially expressed genes (DEGs) between HPV8 E7-expressing NHEKs and control cells, among which, 631 genes were significantly upregulated, and 200 were downregulated. Gene ontology annotation enrichment analysis showed that HPV8 E7 mainly affected the expression of genes associated with protein heterodimerization activity, DNA binding, nucleosomes, and nucleosome assembly. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that overexpression of HPV8 E7 affected the expression of gene clusters associated with viral carcinogenesis and transcriptional misregulation in cancer and necroptosis signaling pathways that reportedly play crucial roles in HPV infection promotion and cancer progression. We also found the DEGs, such as HKDC1 and TNFAIP3, were associated with epigenetic modifications, immune regulation, and metabolic pathways. Conclusion: Our results demonstrate that the pro-carcinogenic effect of HPV8 expression in epithelial cells may be attributed to the regulatory effect of oncogene E7 on gene expression associated with epigenetic modifications and immune and metabolic status-associated gene expression. Although our data are based on an in vitro experiment, it provides the theoretical evidence that the development of squamous cell carcinoma can be caused by HPV.


Assuntos
Alphapapillomavirus , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Alphapapillomavirus/genética , Alphapapillomavirus/metabolismo , Carcinogênese/metabolismo , Humanos , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/genética , Proteínas Oncogênicas Virais/metabolismo , RNA , Transcriptoma/genética
11.
Oxid Med Cell Longev ; 2022: 1863098, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368866

RESUMO

Consistent high-risk human papillomavirus (HPV) infection leads to various malignant cancers. Autophagy can promote cancer progression by helping cancer cells survive under stress or induce oncogenic effects when mutations or abnormalities occur. Mitogen activated protein kinases (MAPKs) can transduce various external or intrinsic stimuli into cellular responses, including autophagy, and dual-specificity phosphates (DUSPs) contribute to the direct regulation of MAPK activities. Previously, we showed that expression of DUSP5 was repressed in HPV16 E7-expressing normal human epidermal keratinocytes (NHEKs). Here we show that clinical HPV16 E7-positive precancerous and cancerous tissues also demonstrate low DUSP5 levels compared with control tissues, indicating that the inverse correlation between HPV16 E7 and DUSP5 is clinically relevant. We furthermore investigated the autophagy response in both DUSP5-deficient and HPV16 E7-expressing NHEKs. Confocal microscopy and Western analysis showed induction of LC3-II levels, autophagosome formation and autophagy fluxes in DUSP5-deficient NHEKs. Furthermore, Western analysis demonstrated specific induction of phosphorylated ERK in DUSP5-deficient and HPV16 E7-expressing NHEKs, indicating that HPV16 E7-mediated repression of DUSP5 results in induced MAPK/ERK signaling. Finally, phosphorylated mTOR and ULK (S757) were reduced in DUSP5-deficient NHEKs, while phosphorylated ULK (S555) and AMPK were increased, thereby inducing canonical autophagy through the mTOR and AMPK pathways. In conclusion, our results demonstrate that HPV16 E7 expression reduces DUSP5 levels, which in turn results in active MAPK/ERK signaling and induction of canonical autophagy through mTOR and MAPK regulation. Given its demonstrated inverse correlation with clinical cancerous tissues, DUSP5 may serve as a potential therapeutic target for cervical cancer.


Assuntos
Alphapapillomavirus , Neoplasias do Colo do Útero , Alphapapillomavirus/metabolismo , Autofagia , Fosfatases de Especificidade Dupla/genética , Fosfatases de Especificidade Dupla/metabolismo , Feminino , Humanos , Queratinócitos/metabolismo , Neoplasias do Colo do Útero/genética
12.
Front Pharmacol ; 13: 826716, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35264959

RESUMO

Although platinum-based chemotherapeutics such as cisplatin are the cornerstone of treatment for ovarian cancer, their clinical application is profoundly limited due to chemoresistance and severe adverse effects. Sporoderm-broken spores of Ganoderma lucidum (SBSGL) have been reported to possess antitumor effects. However, the function and mechanism of SBSGL and its essential composition, ganoderic acid D (GAD), in the cisplatin therapy on ovarian cancer have yet to be investigated. Here, we investigated the combined effect of SBSGL and cisplatin in an ovarian tumor xenograft model. The results showed that combining SBSGL with cisplatin reduced tumor growth and ameliorated cisplatin-induced intestinal injury and myelosuppression. We also confirmed that GAD could enhance the therapeutic effect of cisplatin in SKOV3 and cisplatin-resistant SKOV3/DDP cells by increasing the intracellular reactive oxygen species (ROS). Mechanistically, we proved that ROS-mediated ERK signaling inhibition played an important role in the chemo-sensitization effect of GAD on cisplatin in ovarian cancer. Taken together, combining SBSGL with cisplatin provides a novel therapeutic strategy against ovarian cancer.

13.
Mol Cell ; 82(9): 1660-1677.e10, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35320754

RESUMO

Tumor-infiltrating myeloid cells (TIMs) are crucial cell populations involved in tumor immune escape, and their functions are regulated by multiple epigenetic mechanisms. The precise regulation mode of RNA N6-methyladenosine (m6A) modification in controlling TIM function is still poorly understood. Our study revealed that the increased expression of methyltransferase-like 3 (METTL3) in TIMs was correlated with the poor prognosis of colon cancer patients, and myeloid deficiency of METTL3 attenuated tumor growth in mice. METTL3 mediated m6A modification on Jak1 mRNA in TIMs, the m6A-YTHDF1 axis enhanced JAK1 protein translation efficiency and subsequent phosphorylation of STAT3. Lactate accumulated in tumor microenvironment potently induced METTL3 upregulation in TIMs via H3K18 lactylation. Interestingly, we identified two lactylation modification sites in the zinc-finger domain of METTL3, which was essential for METTL3 to capture target RNA. Our results emphasize the importance of lactylation-driven METTL3-mediated RNA m6A modification for promoting the immunosuppressive capacity of TIMs.


Assuntos
Metiltransferases , Neoplasias , Adenosina/metabolismo , Animais , Humanos , Terapia de Imunossupressão , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Células Mieloides/metabolismo , RNA , Microambiente Tumoral
14.
Front Mol Biosci ; 9: 781619, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198601

RESUMO

Psychological stress plays an important role in hair loss, but the underlying mechanisms are not well-understood, and the effective therapies available to regrow hair are rare. In this study, we established a chronic restraint stress (CRS)-induced hair growth inhibition mouse model and performed a comprehensive analysis of metabolomics and transcriptomics. Metabolomics data analysis showed that the primary and secondary metabolic pathways, such as carbohydrate metabolism, amino acid metabolism, and lipid metabolism were significantly altered in skin tissue of CRS group. Transcriptomics analysis also showed significant changes of genes expression profiles involved in regulation of metabolic processes including arachidonic acid metabolism, glutathione metabolism, glycolysis gluconeogenesis, nicotinate and nicotinamide metabolism, purine metabolism, retinol metabolism and cholesterol metabolism. Furthermore, RNA-Seq analyses also found that numerous genes associated with metabolism were significantly changed, such as Hk-1, in CRS-induced hair growth inhibition. Overall, our study supplied new insights into the hair growth inhibition induced by CRS from the perspective of integrated metabolomics and transcriptomics analyses.

15.
J Leukoc Biol ; 112(3): 411-424, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35075687

RESUMO

IL-27 is a member of the IL-12 family, exerting both anti- and pro-inflammatory activity in a cell-dependent and disease context-specific manner. Antigen-mediated cross-linking of IgE on mast cells triggers a signaling cascade that results in mast cell degranulation and proinflammatory cytokine production, which are key effectors in allergic reactions. Here, we show that the activation of mast cells is negatively regulated by IL-27 signaling. We found that mice lacking IL-27Rα (WSX-1) displayed increased sensitivity to IgE-mediated skin allergic response and chronic airway inflammation. The bone marrow-derived mast cells (BMMCs) of IL-27Rα-deficient mouse showed greater high-affinity receptor Fc epsilon RI (FcεRI)-mediated activation with significantly enhanced degranulation and cytokine production. Mechanistically, the dysregulated signaling in IL-27Rα-/- mast cells is associated with increased activation of Grb2-PLC-γ1-SLP-76, PI3K/Akt/IκBα signaling and decreased phosphorylation level of SH2 domain-containing protein phosphatase1 (SHP1). Furthermore, IL-27 treatment could inhibit mast cell activation directly, and retrovirus-based IL-27 expression in lung attenuated the airway inflammation in mice. Collectively, our findings reveal that IL-27 signaling negatively regulates mast cell activation and its mediated allergic response.


Assuntos
Hipersensibilidade , Interleucina-27 , Animais , Degranulação Celular , Hipersensibilidade/metabolismo , Imunoglobulina E/metabolismo , Inflamação/metabolismo , Interleucina-27/metabolismo , Mastócitos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de IgE/metabolismo
16.
DNA Cell Biol ; 40(10): 1325-1337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34582699

RESUMO

Psoriasis is a chronic inflammatory skin disease characterized by massive keratinocyte proliferation and immune cell infiltration into the epidermis. However, the specific mechanisms underlying the development of psoriasis remain unclear. Untargeted metabolomics and transcriptomics have been used separately to profile biomarkers and risk genes in the serum of psoriasis patients. However, the integration of metabolomics and transcriptomics to identify dysregulated metabolites and genes in the psoriatic skin is lacking. In this study, we performed an untargeted metabolomics analysis of imiquimod (IMQ)-induced psoriasis-like mice and healthy controls, and found that levels of a total of 4,188 metabolites differed in IMQ-induced psoriasis-like mice compared with those in control mice. Metabolomic data analysis using MetaboAnalyst showed that the metabolic pathways of primary metabolites, such as folate biosynthesis and galactose metabolism, were significantly altered in the skin of mice after treatment with IMQ. Furthermore, IMQ treatment also significantly altered metabolic pathways of secondary metabolites, including histidine metabolism, in mouse skin tissues. The metabolomic results were verified by transcriptomics analysis. RNA-seq results showed that histamine decarboxylase (HDC) mRNA levels were significantly upregulated after IMQ treatment. Targeted inhibition of histamine biosynthesis process using HDC-specific inhibitor, pinocembrin (PINO), significantly alleviated epidermal thickness, downregulated the expression of interleukin (IL)-17A and IL-23, and inhibited the infiltration of immune cells during IMQ-induced psoriasis-like skin inflammation. In conclusion, our study offers a validated and comprehensive understanding of metabolism during the development of psoriasis and demonstrated that PINO could protect against IMQ-induced psoriasis-like skin inflammation.


Assuntos
Histidina/metabolismo , Metaboloma , Psoríase/metabolismo , Transcriptoma , Animais , Feminino , Imiquimode/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Psoríase/etiologia , Psoríase/genética
17.
Front Pharmacol ; 12: 719842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34381369

RESUMO

Psoriasis, the most common skin inflammatory disease, is characterized by massive keratinocyte proliferation and immune cell infiltration into epidermis. L-Theanine (L-THE), a nonproteinogenic amino acid derived from green tea (Camellia sinensis), has been proved to possess the properties of anti-inflammatory, antidepressants and neuroprotective. However, whether L-THE has a therapeutic effect on psoriasis is still unknown. In this study, we found that the epidermal thickness and inflammatory response were significantly reduced in Imiquimod (IMQ)-induced psoriasis mice by applying with L-THE on mice skin. The expression of proliferation and inflammation associated genes such as keratin 17, IL-23 and CXCL1-3 was also downregulated by L-THE. Furthermore, L-THE inhibited the production of IL-23 in dendritic cells (DCs) after IMQ treatment, and decreased the levels of chemokines in keratinocytes treated with IL-17A by downregulating the expression of IL-17RA. RNA-seq and KEGG analysis revealed that L-THE significantly regulated the expression of IL-17A and NF-κB signaling pathway-associated genes. Metabolomics analysis displayed that L-THE promoted propanoate metabolism which has been reported to inhibit the activity of TH17 cells. Therefore, our results demonstrated that L-THE significantly decreases the levels of IL-23 and chemokines, and attenuates IMQ-induced psoriasis like skin inflammation by inhibiting the activation of NF-κB and IL-17A signaling pathways, and promoting the propanoate metabolism. Our findings suggest that topical applied L-THE can be used as a topical drug candidate for the treatment of psoriasis or as an adjuvant treatment of ustekinumab or secukinumab to prevent the relapse of psoriasis.

18.
Front Immunol ; 12: 642715, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815396

RESUMO

A systematic and flexible immunoregulatory network is required to ensure the proper outcome of antiviral immune signaling and maintain homeostasis during viral infection. Tumor necrosis factor-α-induced protein 8-like 2 (TIPE2), a novel immunoregulatory protein, has been extensively studied in inflammatory response, apoptosis, and cancer. However, the function of TIPE2 in antiviral innate immunity is poorly clarified. In this study, we reported that the expression of TIPE2 declined at the early period and then climbed up in macrophages under RNA virus stimulation. Knockout of TIPE2 in the macrophages enhanced the antiviral capacity and facilitated type I interferon (IFN) signaling after RNA viral infection both in vitro and in vivo. Consistently, overexpression of TIPE2 inhibited the production of type I IFNs and pro-inflammatory cytokines, and thus promoted the viral infection. Moreover, TIPE2 restrained the activation of TBK1 and IRF3 in the retinoic acid inducible gene-I (RIG-I)-like receptors (RLR) signaling pathway by directly interacting with retinoic acid inducible gene-I (RIG-I). Taken together, our results suggested that TIPE2 suppresses the type I IFN response induced by RNA virus by targeting RIG-I and blocking the activation of downstream signaling. These findings will provide new insights to reveal the immunological function of TIPE2 and may help to develop new strategies for the clinical treatment of RNA viral infections.


Assuntos
Proteína DEAD-box 58/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Macrófagos/imunologia , Infecções por Vírus de RNA/imunologia , Receptores Imunológicos/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Células Cultivadas , Humanos , Imunidade Inata , Interferon Tipo I/antagonistas & inibidores , Interferon Tipo I/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Replicação Viral
19.
EMBO Rep ; 22(5): e52063, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33769697

RESUMO

Psoriasis is mainly characterized by abnormal hyperplasia of keratinocytes and immune cells infiltrating into the dermis and epidermis. Neural precursor cell expressed developmentally downregulated 4-like (NEDD4L) is a highly conserved HECT type E3 ligase that plays an important role in regulating physiological and pathological processes. Here, we identify NEDD4L as a negative regulator of psoriasis. Nedd4l significantly inhibits imiquimod (IMQ)-induced skin hyperplasia, and this effect is attributed to the inhibitory effect of NEDD4L on IL-6/GP130 signaling in keratinocytes. Mechanistically, NEDD4L directly interacts with GP130 and mediates its Lys-27-linked ubiquitination and proteasomal degradation. Moreover, the expression of NEDD4L is downregulated in the epidermis from IMQ-treated mice and psoriasis patients and negatively correlates with the protein levels of GP130 and p-STAT3 in clinical samples. Collectively, we uncover an inhibitory role of NEDD4L in the pathogenesis of psoriasis and suggest a new therapeutic strategy for the treatment of psoriasis.


Assuntos
Psoríase , Ubiquitina-Proteína Ligases , Animais , Receptor gp130 de Citocina , Humanos , Hiperplasia/patologia , Queratinócitos , Camundongos , Ubiquitina-Proteína Ligases Nedd4/genética , Psoríase/genética , Ubiquitina-Proteína Ligases/genética
20.
J Cancer ; 12(6): 1722-1728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613760

RESUMO

Background: The persistent infection of high-risk human papillomavirus (HR-HPV) is one of the most common causes of cervical cancer worldwide, and HPV type 58 (HPV58) is the third most common HPV type in eastern Asia. The E7 oncoprotein is constitutively expressed in HPV58-associated cervical cancer cells and plays a key role during tumorigenesis. This study aimed to assess the HPV58 E7 protein expression in the tissues of cervical cancer and cervical intraepithelial neoplasia (CIN). Methods: A total of 67 HPV58-positive cervical samples were collected, including 25 cervical cancer samples and 42 CIN samples. All the tissues were examined by HPV58 E7, p16INK4a and Ki67 immunohistochemistry (IHC). At last, we analyzed their association with clinical and pathological variables. Results: HPV58 E7 expression was detected in 96% of the HPV58 DNA-positive cervical cancer tissues and 85.7% of HPV58-positive CIN tissues. 65 samples of cervical cancer and CIN tissues had p16-positive staining, while 59 samples were Ki-67 positive. Conclusions: HPV58 E7 protein is highly expressed in both cervical cancer and CIN tissues. HPV58 E7 IHC could be sensitive and specific for evaluating HPV-driven cervical cancer and pre-cancerous lesions, in combination with p16 and Ki-67 IHC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...